The results of the calculations for cavities of various configurations are shown in Fig. 3. It is clear
from the figures that the effective absorption coefficient of the cavity is higher for parallel than for diffuse
radiation, except for a cylindrical cavity with H < 2.0. With increasing depth of the cavity, or a decrease inthe
angle of taper, geff approaches a certain limiting value asymptotically (geff= 1 for parallel radiation, and egpp=
0.943 for diffuse radiation). Therefore, increasing H beyond 4.0 or decreasing 8 below 0.5 for diffuse radiation
increases geff only slightly. The value of goff is more effectively increased by increasing the emissivity of the
cavity walls and decreasing the radius of the cavity opening. For parallel radiation decreasing the angle of
taper 6 below 0.5 is also effective in increasing gqff. By choosing optimum values of all four parameters it is
possible to produce a calorimeter for thermal radiation with characteristics closely approaching those of a
black body.

NOTATION

6, angle of taper of cavity; H, height of cavity; R, radius; R, radius of opening of cavity; ¢, emissivity
of cavity walls; geff, effective emissivity of cavity; Qjp, incident heat; Qpes, reflected heat; A, reflection co-
efficient of cavity walls.
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SOME FEATURES OF THE THERMALLY CONCENTRATED
CONVECTIVE MOTION OF A HARDENING BINARY
MELT AND THE IMPURITY DISTRIBUTION

P. F. Zavgorodnii UDC 621.746.7.001

Some features of the thermally concentrated convective motion of a binary melt, hardening in
a closed rectangular region with movable boundaries, and the impurity distribution are inves-
tigated numerically.

It was shown in [1] that the impurity distribution in the hardening part of a crystallizing fixed melt is
mainly determined by the nature of the change in the impurity concentration at the boundary between the hard
and liquid phases. It was established in [2] that convective mixing of the liquid nucleus due to its temperature
nonuniformity has a considerable effect on the nature.of the impurity distribution at the phase-transition bound-
ary and, consequently, on the impurity distribution in the hardening part of the crystallizing melt.

However, some features of the hardening of a binary melt were ignored in [1, 2]. Thus, when a binary
melt hardens a concentrational nonuniformity develops in the liquid nucleus together with a temperature non-
uniformity, due to the difference in the solubility of the impurity in the solid and liquid phases. The result of
the combined action of the temperature and concentration nonuniformities will be the occurrence and develop-
ment of a thermally concentrated gravitational convective motion in the ligquid nucleus of the hardening alloy,
the features of which should also manifest themselves in the nature of the impurity distribution.

Consider a rectangular region filled with melt with initial temperature T;>Tyg and an initial impurity con-
tent ¢y, with relative dimensions 7, = L,/x,, I = Ly/%,. The region in which the melt exists is situated in space
such that 0= x;= L;, 0= x,= L,, and the direction of the acceleration due to gravity determines the positive di-
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rection of the Ox, axis. The hardening boundary is assumed to be plane, and directly separates the solid and
liquid phases.

At a certain instant of time (t >0), when the temperature of the boundaries of the region falls abruptly to
the crystallization temperature of the melt, a solid phase begins to be formed, where the variations with time
of the thickness of the solid phase and liquid nucleus are assumed to be known functions [3]. If we take as the
characteristic dimensions the width L;(x, = L;) of the region considered, then they have the following form in
dimensionless notation:

Ri=Ry=a}VFo, ¢,=1—a} Fo, g,=1,—a} Fo.
This choice is quite justified, It follows from [4] that the solution of this kind of problem, taking into account
the effect of convective mixing of the liquid nucleus due to heat transfer through the solid phase, which essen-
tially determines the position with time of the phase-transition boundary, does not introduce any considerable
changes into the final result obtained, but considerably complicates the program and increases the time taken
to carry out the calculation.

We will choose as the object being investigated a melt of low-carbon steel, the physical properties of
which are given in [5].

The mathematical mode] of the process consists of the following equations taken in dimensionless form:
the equation of momentum transfer in the Boussinesf approximation with the condition that the characteristic
velocity u, and the characteristic pressure difference Pmax— Pmin are given by the expréssions

DZ
u{):—;o_ ’ Pmnx"_Pmmzp";g‘ s
U Uy U = — -t SmA T — 2.5mPGr6 — ESmEGr, (S — 1);
9F0 T VY =TV 2 =D @
The heat-transfer equation
a6 = i 2)
—— - (Uy) 0 = — A®; (
dFo +OW) Lu
the mass-transfer equation
08 = )
—— (Uy) S = AS; (3)
3 HUY)

and the equation of continuity
yU=0.
In this case the range of variation of the variables 1, and 7, are as follows:
Ri<{ My <L eand Ry < My < 8o
In order to obtain a unique solution of Eqs. (1)-(4) we will add the following initial conditions
Fo=0: U=0,0=1,S=1

and the boundary conditions

M= Ry 0,=0, 0=0, — 95 _pr1_ps,
any

Ny =2¢&;: v,=0, =0, ~——a§-—:a;(1——k)s,
Iy

’lthg: Uizo, @:O,_ 98 =R;(1“k)31
LS

m=ey v =0, 0=0, —95_ e (1-pS.

o

We will introduce the current function

798



LA

o, an,

Uy =

which identically satisfies (4), the velocity vortex ¢ = curl U, and we will also change, using the new variables

- m—R _ M R,
“ g — Ry b 8 — R,

from the region of rectangular cross section to the region of a unit square, so that 0= ¢{,=1land 0= ¢, =1
throughout the hardening process [2, 6].

To solve this problem numerically we used the finite-difference method of alternating directions (the
longitudinal-transverse scheme) [7], in which the equations are split with respect to the coordinates ¢, and o9
simultaneously using the method of fractional time steps [8].

By using the integro-interpolation method and determining the running coefficients [7] the system ofequa-
tions and boundary conditions were reduced to a system of algebraic equations which were solved on the Dnepr-
21 computer [9].

The general character of the thermally concentrated gravitational convective flow of the liquid nucleus of
a hardening alloy and the nature of the impurity distribution was investigated numerically with Gr = Grp= 0.2 -
10%, 7,=3, a =10,

In addition, we also investigated numerically the effect of the ratio of the Grashof hydrodynamic and dif-
fusion numbers, for Gr = 0.2X 107, Grp = 0.2x 10% and Gr = 0.2% 10 and Grp = 0.2 X10, on the nature of the ther-
mally concentrated gravitational convective motion for 7,= 3 and o = 10, and also the effect of a change in the
relative height of the crystallizer cavity in the range of values I, =1,2,and 3 for Gr = Grp= 0.2 107, = 10.
The equilibrium impurity distribution coefficient in all cases was assumed to be k= 0.5 (the initial concentra-
tion of carbon in the iron c,= 0.3%). ‘

From the condition for mathematical stability and fairly high accuracy by means of fractional calculations
of the spatial grid we determined the dimension to be 32 X32.

Analysis of the results of the calculation enable us to draw the following conclusion. In a hardening bin-
ary melt the combined action of the temperature and concentration nonuniformities lead to the occurrence and
the development in the liquid nucleus of a hardening melt of thermally concentrated gravitational convective
motion. The convective motion can be divided into three periods (Fig. 1, curve 1). The first is the period of
acceleration of the melt to the first extremal value of the velocity, corresponding to the greatest of its maxi-
mum values. During this period the convective motion of the melt is determined by the temperature nonuni-
formity of the liquid nucleus, and hence, the nature of the convective motion at this stage is identical with the
nature of the thermal-gravitational convective motion, which has the form of two closed vortices, symmetrical-
ly placed with respect to the vertical axis of the cavity of the crystallizer. In this case, along the verticalbound-
aries of the phase transition the melt drops to the bottom part, and in the central region it moves in the direc-
tion of the leading part of the crystallizer cavity (Fig. 2a).

The second period is a transition period. Its duration is determined by the time interval between the first
and third extremal values of the velocity. During the second period there is a readjustment of the velocity field
due to the reduction in the effect of the temperature ronuniformity and an increase in the effect of the concen.
tration nonuniformity on the hydrodynamics of the liquid nucleus. This leads to degeneration of the vortex of
the convective motion due to the temperature nonuniformity, and to the occurrence and development of a vortex
of convective motion, due to the concentration nonuniformity, and is in a direction opposite to the initial one
(Fig. 2b).

The third period is the period during which the concentration nonuniformity has a decisive effect on the
hydrodynamics of the liquid nucleus. The convective motion during the third period, as in the first period, has
the form of two closed vortices situated symmetrically with respect to the vertical of the crystallizer cavity,
but with a direction of motion opposite to that in the first period (Fig. 2¢).

For Gr = 0.2x 107, Grp = 0.2 x10% when the level of the intensity of the development of the convective mo-
tion is reduced, the duration of the first and second periods is reduced and the third period is increased. The
value of the velocity at points of the first and second extrema of the velocity is reduced, while it increases at
the point of the third extremum (Fig. 1, curve 2). This is obviously due to the increase in the effect of its con-
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Fig. 1. Time distribution of the maximum values

of the velocity of the descending flows ([,=3, a =

10); 1) Gr = Grp= 0.2%107; 2) Gr = 0.2X 107, Grp =

0.2% 10%; 3) Gr = 0.2% 103, Grp= 0.2X10".
centration nonuniformity on the hydrodynamics of the ligquid nucleus as a result of the increase in the Grashof
diffusion number.

For Gr = 0.2X 10 and Grp = 0.2x 107 when the level of the intensity of the development of the convective
motion is increased, the period of acceleration of the melt to the first extremal value of the velocity is reduced.
Nevertheless, due to the considerable increase in the duration of the second period, its third period is reduced.
The value of the velocity at points of the first and second extrema therefore increases, while it is reduced at
the point of the third extremum (Fig. 1, curve 3). This can be explained by the relation between the tempera-
ture nonuniformity and the concentration nonuniformity of the liquid nucleus, which is established when the ef-
fect of the temperature nonuniformity increases due to the increase in the Grashof hydrodynamic number.

In cavities with small relative heights in the range of values I,=1, 2, 3, the duration of the first and sec-
ond periods is reduced, while the duration of the third period is increased.

In addition, it should be noted that in the period of time comprising about 2% of the total hardening time
from the beginning of the process, some increase in the level of the velocity in cavities with small relative
heights is observed over the level of the velocity of convective motion of the melt in cavities with large relative
heights. In the next picture the distribution of the velocities changes into the opposite, and in cavities with re-
duced relative heights a reduction in the overall level of the velocity of convective mixing of the liquid nucleus
is ohserved., '

The explanation of this is obviously as follows.

When the relative height of the erystallizer cavity is reduced the ratio of the overall iength of the phase-
transition boundary to the area of the liquid nucleus increases. This facilitates an intensification of the cooling
of the liquid nucleus and thereby accelerates the occurrence and development of the temperature nonuniformity,
which is also responsible for the higher level of the velocity of convective motion of the melt. The increased
level of the velocity of convective mixing of the liquid nucleus under more intense cooling conditions obviously
facilitates the more rapid degeneration of the temperature nonuniformity, which leads to a reduction in its ei-
fect on the hydrodynamics of the liquid nucleus.

On the other hand, when the relative height of the crystallizer cavity is reduced the value of the ratio of
the overall length of the phase-transition boundary to the area of the hardening melt is reduced. This leads to
an increase in the impurity concentration at the phase-transition boundary, which, under conditions of increasd
velocity of convective mixing of the liquid nucleus, facilitates a more rapid occurrence and development ofcon-
centration nonuniformity.

Since, for this case p, >Pmp the concentration nonuniformity has an effect on the hydrodynamics of the
liquid nucleus facilitating a reduction in the level of the velocity of convective mixing. Nevertheless, an in-
crease in the impurity content in the liquid nucleus due to fairly intense transfer of the impurity from the phase-
transition boundary into the depth of the liguid nucleus at this stage of the development of the concentration non-
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uniformity, and subsequent reduction in the overall level of the rate of convective mixing of the liquid nucleus,
produce a situation which helps to reduce the intensity of the development of the concentration nonuniformity.

Hence, the combination of the above factors in the final analysis also characterizes the above-mentioned
nature of the thermally concentrated gravitation convective motion of the melt.

An analysis of the results of a numerical investigation of the nature of the impurity distribution in the
melt, hardened under thermally concentrated gravitational convective motion conditions, enables us to draw the
following conclusion.

The impurity distribution has a quite clear tendency to increase its content from the periphery of the
hardening melt towards the central part (Fig. 3, curve 1), This is in good agreement with the results obtained
in [2, 10], in which it was shown that a similar phenomenon occurs for an impurity distribution in a melt
hardened both under conditions of a fixed ligquid nucleus, and under conditions of thermal gravitational convec~
tive mixing.
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An important feature of the impurity distribution in a melt hardened under conditions of thermally con-
centrated gravitational convective mixing of the ligquid nucleus is the formation between the periphery and its
central part of a solid-phase with extremal values of the impurity concentration (Fig. 3, curve 1).

The formation of a solid phase with extremal values of the impurity concentration is identical in time
with the period of adjustment of the velocity field of the convective motion, and is obviously due to the change
in the impurity concentration at the phase-transition boundary due to the change in the intensity of convective
transfer from the phase-transition boundary into the depth of the liquid nucleus at the given stage of the forma-
tion of the solid phase.

For a value of the Grashof hydrodynamic and diffusion numbers Gr = 0.7% 107 and Grp = 0.2X 108, the
quantitative difference between the extremal values of the impurity concentration increase, while the solid phase
itself with extremal values of the impurity concentration is shifted towards the peripheral part of the harden-
ing alloy (Fig. 3, curve 2).

For Gr = 0.2%10% and Grp = 0.2 X107 the quantitative differences between the extremal values of the im-
purity concentration are reduced considerably, while the nature of the impurity distribution itself approaches
the nature of the impurity distribution in the melt hardened under thermal gravitational convective mixing con-
ditions of the liquid nucleus {2], (Fig. 3, curve 3).

As In the first case, in the second and third cases the nature of the impurity distribution is due to the
features of the hydrodynamics of the liguid nucleus of the hardening melt.

In crystallizers with low values of the relative heights in the range [, =1, 2, and 3, together with some re-
duction in the value of the quantitative difference between the extremal values of the impurity concentration
there is also a considerable displacement of the solid-phase zone with extremal values of the impurity concen-
tration towards the periphery of the hardening melt.

Hence, in a melt hardening under thermally concentrated gravitational convective mixing of the liquid
nucleus a zone with extremal parts of impurity content is formed between the periphery and the central part of
_ the forming solid phase, which leads to an increase in the nonuniformity of its distribution.

An increase in the ratio of the Grashof hydrodynamic and diffusion numbers leads to degeneracy of the
zone with extremal values of the impurity concentration and hence facilitates an increase in the uniformity of
its distribution.

In crystallizers with lower values of the relative heiglts in the range I,=1, 2, and 3 the nonuniformity of
the impurity distribution increases due to broadening of the area occupied by the zone with extremal values of
the impurity concentration.

NOTATION

X, characteristic dimension; X; (i=1, 2), a dimensional coordinate; I (i=1,2), height and width of the
crystallizer cavity; r;, ej (i=1,2), dimensional coordinates of the phase transition in the Ox;x, coordinate sys-
tem; T, Ty, and Tg, current temperature, initial temperature, and melt crystallization temperature; p, dens-
ity of the melt; P, Pmax, and Ppyip, current pressure, maximum pressure, and minimum pressure in the sys-
tem; c, ¢, current and initial impurity concentration; e,, unit vector having the same direction as the direc-
tion as the force of gravity; g, acceleration due to gravity; B, coefficient of thermal expansion; v, diffusion
broadening coefficient; 1, velocity of convective motion; v, kinematic viscosity; k, equilibrium impurity dis-
tribution coefficient; t, current time; D, diffusion coefficient; @, thermal diffusivity; AT = T)—TK, initial over-
heating of the melt; n;=x;/x,(i =1, 2), dimensionless coordinate; 1;= Ly/%y (i=1,2) is the relative height and
width of the crystallizer cavity in the coordinate system 0nn,; Rj=rT;/%, & = €{/X;, dimensionless coordi-
nates of the phase~transition boundary in the 077, coordinate system; T =u/u,, dimensionless velocity of con-
vective motion; Gr = [g|8ATx3/v?, Grashof hydrodynamic number; Grp = lgyeqxd/v?, Grashof diffusion number;
Fo =Dt x}, dimensionless time, Sm = v/D, Schmidt number; and Lu=D/a, Lewis number.
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THERMAL DIFFUSIVITY OF INHOMOGENEOUS SYSTEMS
1. TEMPERATURE-FIELD CALCULATION

G. N. Dul'nev and A. V. Sigalov UDC 536.24.02

The possibility of analyzing the nonsteady temperature fields of inhomogeneous systems using
the guasi-~-homogeneous-body model is investigated.

Definition of Quasi-Homogeneous Body

A system consisting of homogeneous regions (components) divided by boundary surfaces is usually re-
ferred to as inhomogeneous or heterogeneous. Offen, in order to calculate the temperature field, this body is
replaced by a quasi-homogeneous body with effective thermal conductivity and diffusivity (A, @) and volume spe-~
cific heat (cp). It is then postulated that the temperaturefield of this body is described at all points by the equa-
tion

1 ot (1)

LI LA 7

a Ot
and in specifying the conditions at the external boundaries the effective thermal conductivity is used. This is
determined either experimentally, or by the methods of generalized conduction theory [1], and is equal to the
ratio of the mean flow <g> through the body and the mean temperature gradient <Vt in the body
A=—(q)/(vt). 2)

The effective volume specific heat is determined from the additive formula

k
o= Y cipim; 3)
i=1

and the effective thermal diffusivity is found from a formula valid for a homogeneous body
a= Mecp. 4)

This approaches to the analysis of inhomogeneous~system temperature fields is widely known, but it is
not possible to find a sufficiently general justification of this method in the literature. In the present work, the
error involved in passing to a quasi-homogeneous body for the calculation of nonsteady temperature fields isin-
vestigated, and the limits of applicability of the model in Eqs. (1)-({4) are established.
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